ULTRA LOW NOISE PSEUDOMORPHIC HJ FET

FEATURES

• VERY LOW NOISE FIGURE: 0.40 dB Typical at 12 GHz

NEC

- HIGH ASSOCIATED GAIN: 12.5 dB Typical at 12 GHz
- Lg \leq 0.20 μm , Wg = 200 μm
- LOW COST METAL CERAMIC PACKAGE
- TAPE & REEL PACKAGING OPTION AVAILABLE

DESCRIPTION

The NE32984D is a pseudomorphic Hetero-Junction FET that uses the junction between Si-doped AlGaAs and undoped InGaAs to create very high mobility electrons. The device features mushroom shaped TiAl gates for decreased gate resistance and improved power handling capabilities. The mushroom gate also results in lower noise figure and high associated gain. This device is housed in an epoxy-sealed, metal/ceramic package and is intended for high volume consumer and industrial applications.

NEC's stringent quality assurance and test procedures assure the highest reliability and performance.

ELECTRICAL CHARACTERISTICS (TA = 25°C)

	PART NUMBER PACKAGE OUTLINE	NE32984D 84D			
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX
NF ¹	Optimum Noise Figure, VDs = 2 V, IDs = 10 mA, f = 12 GHz	dB		0.40	0.50
GA ¹	Associated Gain, VDs = 2 V, IDs = 10 mA, f = 12 GHz	dB	11.0	12.5	
IDSS	Saturated Drain Current, VDS = 2 V,VGS = 0 V	mA	20	60	90
Vp	Pinch-off Voltage, VDs = 2 V, IDs = 100 µA	V	-0.2	-0.7	-2.0
gm	Transconductance, VDs = 2 V, ID = 10 mA	mS	45	60	
lgso	Gate to Source Leakage Current, VGs = -3 V	μA		0.5	10.0
RTH (CH-A)	Thermal Resistance (Channel to Ambient)	°C/W		750	
RTH (CH-C)	Thermal Resistance (Channel to Case)	°C/W			350

Note:

1. Typical values of noise figures and associated gain are those obtained when 50% of the devices from a large number of lots were individually measured in a circuit with the input individually tuned to obtain the minimum value. Maximum values are criteria established on the production line as a "go-no-go" screening tuned for the "generic" type but not each specimen.

NE32984D

ABSOLUTE MAXIMUM RATINGS¹ (TA = 25°C)

SYMBOLS	PARAMETERS	UNITS	RATINGS	
Vds	Drain to Source Voltage	V	4.0	
Vgs	Gate to Source Voltage	V	-3.0	
IDS	Drain Current	mA	IDSS	
Igrf	Gate Current	μΑ	100	
Тсн	Channel Temperature	°C	150	
Tstg	Storage Temperature	°C	-65 to +150	
Рт	PT Total Power Dissipation		165	

Note:

1. Operation in excess of any one of these parameters may result in permanent damage.

NOISE PARAMETERS

VDS = 2 V, ID = 10 mA

FREQ.	NFMIN.	GA	Γopt		
(GHz)	(dB)	(dB)	MAG	ANG	Rn/50
2.0	0.29	20.0	0.85	20	0.30
4.0	0.30	18.3	0.75	41	0.28
6.0	0.31	16.5	0.68	63	0.20
8.0	0.34	15.0	0.61	86	0.13
10.0	0.37	13.6	0.56	111	0.09
12.0	0.40	12.5	0.52	137	0.05
14.0	0.49	12.0	0.47	164	0.04
16.0	0.63	11.8	0.40	-168	0.04
18.0	0.81	11.5	0.31	-139	0.07

TYPICAL PERFORMANCE CURVES (TA = 25°C)

MAXIMUM STABLE GAIN AND FORWARD INSERTION GAIN vs. FREQUENCY

DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE

NOISE FIGURE AND ASSOCIATED GAIN vs. DRAIN CURRENT

TYPICAL SCATTERING PARAMETERS (TA = 25°C)

NE32984D

VDS = 2 V, ID = 10 mA

FREQUENCY	:	S 11	S	21	S	512		S 22	к	MAG ¹
(GHz)	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG		(dB)
2	.984	-26.4	4.583	146.9	.029	66.4	.549	-32.0	.13	22.0
3	.960	-39.3	4.480	130.6	.041	55.9	.520	-47.8	.22	20.4
4	.919	-52.8	4.332	114.3	.050	47.9	.481	-64.5	.31	19.4
5	.868	-64.5	4.141	98.8	.057	38.5	.447	-81.9	.45	18.6
6	.816	-75.5	3.923	84.4	.060	31.2	.418	-99.8	.58	18.2
7	.786	-85.7	3.786	70.8	.064	26.0	.396	-116.7	.63	17.7
8	.759	-95.9	3.659	57.1	.066	21.7	.382	-132.6	.69	17.4
9	.736	-106.3	3.547	43.1	.068	18.2	.374	-147.8	.75	17.2
10	.689	-116.2	3.375	30.1	.071	16.0	.368	-163.0	.86	16.8
11	.659	-125.6	3.264	17.5	.074	13.2	.370	-178.3	.91	16.4
12	.621	-135.5	3.217	4.9	.079	11.4	.374	167.4	.94	16.1
13	.590	-146.3	3.186	-8.0	.085	7.3	.391	155.0	.92	15.7
14	.554	-157.9	3.172	-21.3	.093	2.0	.406	143.2	.91	15.3
15	.522	-171.0	3.180	-35.2	.104	-5.5	.417	132.1	.86	14.9
16	.491	173.0	3.220	-49.9	.114	-12.6	.432	119.7	.82	14.5
17	.461	153.2	3.303	-65.6	.124	-23.3	.445	106.3	.78	14.3
18	.452	129.4	3.367	-83.4	.137	-36.4	.453	91.0	.72	13.9

Note:

1. Gain calculation:

 $MAG = \frac{|S_{21}|}{|S_{12}|} (K \pm \sqrt{K^2 - 1}). When K \le 1, MAG is undefined and MSG values are used. MSG = \frac{|S_{21}|}{|S_{12}|}, K = \frac{1 + |\Delta|^2 - |S_{11}|^2 - |S_{22}|^2}{2 |S_{12} S_{21}|}, \Delta = S_{11} S_{22} - S_{21} S_{12}$

MAG = Maximum Available Gain

MSG = Maximum Stable Gain

OUTLINE DIMENSIONS (Units in mm)

PACKAGE OUTLINE 84D

ORDERING INFORMATION

PART NUMBER	AVAILABILITY	LEAD LENGTH	PACKAGE OUTLINE
NE32984D-S	Bulk up to 1K	1.0 mm	84D
NE32984D-T1	1K/Reel	1.0 mm	84D